Languages:
 

MA Scenarios - TechnoGarden

The MA developed four global scenarios exploring plausible future changes in drivers, ecosystems, ecosystem services, and human well-being. These scenarios are :

Ecosystem Management World Development
Globalization Regionalization
Reactive Global Orchestration Order from Strength
Proactive TechnoGarden Adapting Mosaic
TechnoGarden

"The TechnoGarden scenario depicts a globally connected world relying strongly on technology and highly managed, often engineered ecosystems, to deliver ecosystem services. Overall efficiency of ecosystem service provision improves, but is shadowed by the risks inherent in large-scale human-made solutions and rigid control of ecosystems. Technology and market-oriented institutional reform are used to achieve solutions to environmental problems. These solutions are designed to benefit both the economy and the environment. These changes co-develop with the expansion of property rights to ecosystem services, such as requiring people to pay for pollution they create or paying people for providing key ecosystem services through actions such as preservation of key watersheds. Interest in maintaining, and even increasing, the economic value of these property rights, combined with an interest in learning and information, leads to a flowering of ecological engineering approaches for managing ecosystem services. Investment in green technology is accompanied by a significant focus on economic development and education, improving people's lives and helping them understand how ecosystems make their livelihoods possible.

A variety of problems in global agriculture are addressed by focusing on the multifunctional aspects of agriculture and a global reduction of agricultural subsidies and trade barriers. Recognition of the role of agricultural diversification encourages farms to produce a variety of ecological services, rather than simply maximizing food production. The combination of these movements stimulates the growth of new markets for ecosystem services, such as tradable nutrient runoff permits, and the development of technology for increasingly sophisticated ecosystem management. Gradually, environmental entrepreneurship expands as new property rights and technologies co-evolve to stimulate the growth of companies and cooperatives providing reliable ecosystem services to cities, towns, and individual property owners.

Innovative capacity expands quickly in developing nations. The reliable provision of ecosystem services, as a component of economic growth, together with enhanced uptake of technology due to rising income levels, lifts many of the world's poor into a global middle class. Elements of human well-being associated with social relations decline in this scenario due to great loss of local culture, customs, and traditional knowledge that occurs and due to the weakening of civil society institutions as an increasing share of interactions take place over the Internet. While the provision of basic ecosystem services improves the well-being of the world's poor, the reliability of the services, especially in urban areas, is increasingly critical and increasingly difficult to ensure. Not every problem has succumbed to technological innovation. Reliance on technological solutions sometimes creates new problems and vulnerabilities. In some cases, we seem to be barely ahead of the next threat to ecosystem services. In such cases new problems often seem to emerge from the last solution, and the costs of managing the environment are continually rising. Environmental breakdowns that impact large numbers of people become more common. Sometimes new problems seem to emerge faster than solutions. The challenge for the future will be to learn how to organize social-ecological systems so that ecosystem services are maintained without taxing society's ability to implement solutions to novel, emergent problems. "

Source & © Millennium Ecosystem Assessment
 Synthesis Report (2005),
Chapter 5, Box 5.1, pp.72-73

Related publication:
Ecosystem Change homeEcosystem Change
Other Figures & Tables on this publication:

Box 3.1 Table. Selected Water-related Diseases.

Table 1.1. Comparative table of reporting systems as defined by the Millennium Assessment

Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Provisioning services

Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Regulating services

Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Cultural services

Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Supporting services

Table 2.2. Indicative Ecosystem Service Trade-offs.

Table 5.1. Main Assumptions Concerning Indirect and Direct Driving Forces Used in the MA Scenarios

Table 5.2. Outcomes of Scenarios for Ecosystem Services in 2050 Compared with 2000

Table 5.3. Outcomes of Scenarios for Human Well-being in 2050 Compared with 2000

Table 5.4. Costs and Benefits of Proactive as Contrasted with Reactive Ecosystem Management as Revealed in the MA Scenarios

Table 8.1. Applicability of Decision Support Methods and Frameworks

Marine, Coastal, and Island Systems

Urban, Dryland and Polar systems

Forest systems

Cultivated systems

Inland water and Mountain systems

Box Figure B. Proportion of Population with Improved Drinking Water Supply in 2002

Box Figure C. Proportion of population with improved sanitation coverage in 2002

Figure 1.2. Conversion of Terrestrial Biomes

Figure 1.3. Decline in Trophic Level of Fisheries Catch Since 1950

Figure 1.4. Locations reported by various studies as undergoing high rates of land cover change in the past few decades.

Figure 1.5. Global Trends in the Creation of Reactive Nitrogen on Earth by Human Activity, with Projection to 2050

Figure 1.7. Growth in Number of Marine Species Introductions.

Figure 1.8. Species Extinction Rates

Figure 3.4. Collapse of Atlantic Cod Stocks Off the East Coast of Newfoundland in 1992

Figure 3.5. Dust Cloud Off the Northwest Coast of Africa, March 6, 2004

Figure 3.6. Changes in Economic Structure for Selected Countries

Figure 3.7. Human Population Growth Rates, 1990-2000, and Per Capita GDP and Biological Productivity in 2000 in MA Ecological Systems

Figure 4.1. GDP Average Annual Growth, 1990-2003

Figure 4.2. Per capita GDP Average Annual Growth, 1990-2003

Figure 4.3. Main Direct Drivers of Change in Biodiversity and Ecosystems

Figure 5.1. MA World Population Scenarios

Figure 5.3. Number of Ecosystem Services Enhanced or Degraded by 2050 in the Four MA Scenarios

Figure 6.1. MA Sub-Global Assessments

Figure 7.1. Characteristic Time and Space Scales Related to Ecosystems and Their Services

Box 3.1. Linkages between Ecosystem Services and Human Well-being

Box 6.1 Local Adaptations of MA Conceptual Framework

Scenarios of the Millennium Ecosystem Assessment

MA Scenarios - Global Orchestration

MA Scenarios - Order from Strength

MA Scenarios - TechnoGarden

MA Scenarios - Adapting Mosaic

Marine, Coastal and Island systems

Urban, Dryland and Polar systems

Forest and Cultivated systems

Inland waters and Mountain systems

MA Systems

Box 2.1: Ecosystem Services

Box 2.1: Ecosystem Services

Box 3.2. Ecosystems and the Millennium Development Goals

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Basic Materials for a Good Life

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Health

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Good Social Relations

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Security

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Freedom of Choice and Action

Box 6.1 Local Adaptations of MA Conceptual Framework

Figure 1.1. Time Series of Intercepted Continental Runoff and Large Reservoir Storage, 1900-2000

Figure 1.6. Estimated Total Reactive Nitrogen Deposition from the Atmosphere

Figure 2.1. Estimated Global Marine Fish Catch, 1950-2001.

Figure 2.2. Trend in Mean Depth of Catch Since 1950.

Figure 3.1. Net National Savings Adjusted for Investments in Human Capital, Natural Resource Depletion, and Damage Caused by Pollution compared with Standard Net National Savings Measurements

Figure 3.2. Annual Flow of Benefits from Forests in Selected Countries

Figure 3.3. Economic Benefits Under Alternate Management Practices

Table 4.1. Increase in Nitrogen Fluxes in Rivers to Coastal Oceans

Figure 5.2. Comparison of Global River Nitrogen Export

Figure 5.4. Number of Undernourished Children Projected in 2050 Under MA Scenarios

Figure 5.5. Net Change in Components of Human Well-being Between 2000 and 2050 Under MA Scenarios.

Figure 8.1. Total Carbon Market Value per Year (in million dollars nominal)