Languages:
 

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Basic Materials for a Good Life

(see figure on linkages in Box 3.1).

See also specific information for each main component:

"This refers to the ability to have a secure and adequate livelihood, including income and assets, enough food and water at all times, shelter, ability to have energy to keep warm and cool, and access to goods. Changes in provisioning services such as food, water, and fuelwood have very strong impacts on the adequacy of material for a good life. Access to these materials is heavily mediated by socioeconomic circumstances. For the wealthy, local changes in ecosystems may not cause a significant change in their access to necessary material goods, which can be purchased from other locations, sometimes at artificially low prices if governments provide subsidies (for example, water delivery systems). Changes in regulating services influencing water supply, pollination and food production, and climate have very strong impacts on this element of human well-being. These, too, can be mediated by socioeconomic circumstances, but to a smaller extent. Changes in cultural services have relatively weak linkages to material elements of well-being. Changes in supporting services have a strong influence by virtue of their influence on provisioning and regulating services. The following are some examples of material components of well-being affected by ecosystem change.

Income and Employment: Increased production of crops, fisheries, and forest products has been associated with significant growth in local and national economies. Changes in the use and management of these services can either increase employment (as, for example, when agriculture spreads to new regions) or decrease it through gains in productivity of labor. In regions where productivity has declined due to land degradation or overharvesting of fisheries, the impacts on local economies and employment can be devastating to the poor or to those who rely on these services for income.

Food: The growth in food production and farm productivity has more than kept pace with global population growth, resulting in significant downward pressure on the price of foodstuffs. Following significant spikes in the 1970s caused primarily by oil crises, there have been persistent and profound reductions in the price of foodstuffs globally (C8.1). Over the last 40 years, food prices have dropped by around 40% in real terms due to increases in productivity (C26.2.3). It is well established that past increases in food production, at progressively lower unit cost, have improved the health and well-being of billions, particularly the most needy, who spend the largest share of their incomes on food (C8.1). Increased production of food and lower prices for food have not been entirely positive. Among industrial countries, and increasingly among developing ones, diet-related risks, mainly associated with overnutrition, in combination with physical inactivity now account for one third of the burden of disease (R16.1.2). At present, over 1 billion adults are overweight, with at least 300 million considered clinically obese, up from 200 million in 1995 (C8.5.1).

Water Availability: The modification of rivers and lakes through the construction of dams and diversions has increased the water available for human use in many regions of the world. However, the declining per capita availability of water is having negative impacts on human well-being. Water scarcity is a globally significant and accelerating condition for roughly 1-2 billion people worldwide, leading to problems with food production, human health, and economic development. Rates of increase in a key water scarcity measure (water use relative to accessible supply) from 1960 to the present averaged nearly 20% per decade globally, with values of 15% to more than 30% per decade for individual continents (C7.ES). "

Source & © Millennium Ecosystem Assessment
 Synthesis Report (2005),
Chapter 3, pp.50-51

Related publication:
Ecosystem Change homeEcosystem Change
Other Figures & Tables on this publication:

Box 3.1 Table. Selected Water-related Diseases.

Table 1.1. Comparative table of reporting systems as defined by the Millennium Assessment

Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Provisioning services

Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Regulating services

Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Cultural services

Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Supporting services

Table 2.2. Indicative Ecosystem Service Trade-offs.

Table 5.1. Main Assumptions Concerning Indirect and Direct Driving Forces Used in the MA Scenarios

Table 5.2. Outcomes of Scenarios for Ecosystem Services in 2050 Compared with 2000

Table 5.3. Outcomes of Scenarios for Human Well-being in 2050 Compared with 2000

Table 5.4. Costs and Benefits of Proactive as Contrasted with Reactive Ecosystem Management as Revealed in the MA Scenarios

Table 8.1. Applicability of Decision Support Methods and Frameworks

Marine, Coastal, and Island Systems

Urban, Dryland and Polar systems

Forest systems

Cultivated systems

Inland water and Mountain systems

Box Figure B. Proportion of Population with Improved Drinking Water Supply in 2002

Box Figure C. Proportion of population with improved sanitation coverage in 2002

Figure 1.2. Conversion of Terrestrial Biomes

Figure 1.3. Decline in Trophic Level of Fisheries Catch Since 1950

Figure 1.4. Locations reported by various studies as undergoing high rates of land cover change in the past few decades.

Figure 1.5. Global Trends in the Creation of Reactive Nitrogen on Earth by Human Activity, with Projection to 2050

Figure 1.7. Growth in Number of Marine Species Introductions.

Figure 1.8. Species Extinction Rates

Figure 3.4. Collapse of Atlantic Cod Stocks Off the East Coast of Newfoundland in 1992

Figure 3.5. Dust Cloud Off the Northwest Coast of Africa, March 6, 2004

Figure 3.6. Changes in Economic Structure for Selected Countries

Figure 3.7. Human Population Growth Rates, 1990-2000, and Per Capita GDP and Biological Productivity in 2000 in MA Ecological Systems

Figure 4.1. GDP Average Annual Growth, 1990-2003

Figure 4.2. Per capita GDP Average Annual Growth, 1990-2003

Figure 4.3. Main Direct Drivers of Change in Biodiversity and Ecosystems

Figure 5.1. MA World Population Scenarios

Figure 5.3. Number of Ecosystem Services Enhanced or Degraded by 2050 in the Four MA Scenarios

Figure 6.1. MA Sub-Global Assessments

Figure 7.1. Characteristic Time and Space Scales Related to Ecosystems and Their Services

Box 3.1. Linkages between Ecosystem Services and Human Well-being

Box 6.1 Local Adaptations of MA Conceptual Framework

Scenarios of the Millennium Ecosystem Assessment

MA Scenarios - Global Orchestration

MA Scenarios - Order from Strength

MA Scenarios - TechnoGarden

MA Scenarios - Adapting Mosaic

Marine, Coastal and Island systems

Urban, Dryland and Polar systems

Forest and Cultivated systems

Inland waters and Mountain systems

MA Systems

Box 2.1: Ecosystem Services

Box 2.1: Ecosystem Services

Box 3.2. Ecosystems and the Millennium Development Goals

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Basic Materials for a Good Life

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Health

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Good Social Relations

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Security

Box 3.1. Linkages between Ecosystem Services and Human Well-being: Freedom of Choice and Action

Box 6.1 Local Adaptations of MA Conceptual Framework

Figure 1.1. Time Series of Intercepted Continental Runoff and Large Reservoir Storage, 1900-2000

Figure 1.6. Estimated Total Reactive Nitrogen Deposition from the Atmosphere

Figure 2.1. Estimated Global Marine Fish Catch, 1950-2001.

Figure 2.2. Trend in Mean Depth of Catch Since 1950.

Figure 3.1. Net National Savings Adjusted for Investments in Human Capital, Natural Resource Depletion, and Damage Caused by Pollution compared with Standard Net National Savings Measurements

Figure 3.2. Annual Flow of Benefits from Forests in Selected Countries

Figure 3.3. Economic Benefits Under Alternate Management Practices

Table 4.1. Increase in Nitrogen Fluxes in Rivers to Coastal Oceans

Figure 5.2. Comparison of Global River Nitrogen Export

Figure 5.4. Number of Undernourished Children Projected in 2050 Under MA Scenarios

Figure 5.5. Net Change in Components of Human Well-being Between 2000 and 2050 Under MA Scenarios.

Figure 8.1. Total Carbon Market Value per Year (in million dollars nominal)