Box 6.1 Local Adaptations of MA Conceptual Framework
"(SG.SDM) The MA framework was applied in a wide range of assessments at multiple scales. Particularly for the more local assessments, the framework needed to be adapted to better reflect the needs and concerns of local communities. In the case of an assessment conducted by and for indigenous communities in the Vilcanota region of Peru, the framework had to be recreated from a base with the Quechua understanding of ecological and social relationships. (See Figure.) Within the Quechua vision of the cosmos, concepts such as reciprocity (Ayni), the inseparability of space and time, and the cyclical nature of all processes (Pachakuti) are important components of the Inca definition of ecosystems. Love (Munay) and working (Llankay) bring humans to a higher state of knowledge (Yachay) about their surroundings and are therefore key concepts linking Quechua communities to the natural world. Ayllu represents the governing institutions that regulate interactions between all living beings.
The resulting framework has similarities with the MA Conceptual Framework, but the divergent features are considered to be important to the Quechua people conducting the assessment. The Vilcanota conceptual framework also includes multiple scales (Kaypacha, Hananpacha, Ukupacha); however, these represent both spatial scales and the cyclical relationship between the past, present, and future. Inherent in this concept of space and time is theadaptive capacity of the Quechua people, who welcome change and have become resilient to it through an adaptive learning process. (It is recognized that current rates of change may prove challenging to the adaptive capacities of the communities). The cross shape of the Vilcanota framework diagram represents the "Chakana," the most recognized and sacred shape to Quechua people, and orders the world through deliberative and collective decision-making that emphasizes reciprocity (Ayni). Pachamama is similar to a combination of the "ecosystem goods and services" and "human well-being" components of the MA framework. Pachakuti is similar to the MA "drivers" (both direct and indirect). Ayllu (and Munay, Yachay, and Llankay) may be seen as responses and are more organically integrated into the cyclic process of change and adaptation.
In the Vilcanota assessment, the Quechua communities directed their work process to assess the conditions and trends of certain aspects of the Pachamama (focusing on water, soil, and agrobiodiversity), how these goods and services are changing, the reasons behind the changes, the effects on the other elements of the Pachamama, how the communities have adapted and are adapting to the changes, and the state of resilience of the Quechua principles and institutions for dealing with these changes in the future. Developing the local conceptual framework from a base of local concepts and principles, as opposed to simply translating the MA framework into local terms, has allowed local communities to take ownership of their assessment process and given them the power both to assess the local environment and human populations using their own knowledge and principles of well-being and to seek responses to problems within their own cultural and spiritual institutions."
Source & ©
Millennium Ecosystem Assessment
Synthesis Report (2005),
Chapter 6, p.87
Related publication:
Other Figures & Tables on this publication:
Box 3.1 Table. Selected Water-related Diseases.
Table 1.1. Comparative table of reporting systems as defined by the Millennium Assessment
Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Provisioning services
Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Regulating services
Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Cultural services
Table 2.1. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Supporting services
Table 2.2. Indicative Ecosystem Service Trade-offs.
Table 5.1. Main Assumptions Concerning Indirect and Direct Driving Forces Used in the MA Scenarios
Table 5.2. Outcomes of Scenarios for Ecosystem
Services in 2050 Compared with 2000
Table 5.3. Outcomes of Scenarios for Human Well-being in 2050 Compared with 2000
Table 5.4. Costs and Benefits of Proactive as Contrasted with Reactive Ecosystem Management as Revealed in the MA Scenarios
Table 8.1. Applicability of Decision Support Methods and Frameworks
Marine, Coastal, and Island Systems
Urban, Dryland and Polar systems
Forest systems
Cultivated systems
Inland water and Mountain systems
Box Figure B. Proportion of Population with Improved Drinking Water Supply in 2002
Box Figure C. Proportion of population with improved sanitation coverage in 2002
Figure 1.2. Conversion of Terrestrial Biomes
Figure 1.3. Decline in Trophic Level of Fisheries Catch Since 1950
Figure 1.4. Locations reported by various studies as undergoing high rates of land cover change in the past few decades.
Figure 1.5. Global Trends in the Creation of Reactive Nitrogen on Earth by Human Activity, with Projection to 2050
Figure 1.7. Growth in Number of Marine Species Introductions.
Figure 1.8. Species Extinction Rates
Figure 3.4. Collapse of Atlantic Cod Stocks Off the East Coast of Newfoundland in 1992
Figure 3.5. Dust Cloud Off the Northwest Coast of Africa, March 6, 2004
Figure 3.6. Changes in Economic Structure for Selected Countries
Figure 3.7. Human Population Growth Rates, 1990-2000, and Per Capita GDP and Biological Productivity in 2000 in MA Ecological Systems
Figure 4.1. GDP Average Annual Growth, 1990-2003
Figure 4.2. Per capita GDP Average Annual Growth, 1990-2003
Figure 4.3. Main Direct Drivers of Change in Biodiversity and Ecosystems
Figure 5.1. MA World Population Scenarios
Figure 5.3. Number of Ecosystem Services Enhanced or Degraded by 2050 in the Four MA Scenarios
Figure 6.1. MA Sub-Global Assessments
Figure 7.1. Characteristic Time and Space Scales Related to Ecosystems and Their Services
Box 3.1. Linkages between Ecosystem Services and Human Well-being
Box 6.1 Local Adaptations of MA Conceptual Framework
Scenarios of the Millennium Ecosystem Assessment
MA Scenarios - Global Orchestration
MA Scenarios - Order from Strength
MA Scenarios - TechnoGarden
MA Scenarios - Adapting Mosaic
Marine, Coastal and Island systems
Urban, Dryland and Polar systems
Forest and Cultivated systems
Inland waters and Mountain systems
MA Systems
Box 2.1: Ecosystem Services
Box 2.1: Ecosystem Services
Box 3.2. Ecosystems and the Millennium Development Goals
Box 3.1. Linkages between Ecosystem Services and Human Well-being:
Basic Materials for a Good Life
Box 3.1. Linkages between Ecosystem Services and Human Well-being:
Health
Box 3.1. Linkages between Ecosystem Services and Human Well-being:
Good Social Relations
Box 3.1. Linkages between Ecosystem Services and Human Well-being:
Security
Box 3.1. Linkages between Ecosystem Services and Human Well-being:
Freedom of Choice and Action
Box 6.1 Local Adaptations of MA Conceptual Framework
Figure 1.1. Time Series of Intercepted Continental Runoff and Large Reservoir Storage, 1900-2000
Figure 1.6. Estimated Total Reactive Nitrogen Deposition from the Atmosphere
Figure 2.1. Estimated Global Marine Fish Catch, 1950-2001.
Figure 2.2. Trend in Mean Depth of Catch Since 1950.
Figure 3.1. Net National Savings Adjusted for Investments in Human Capital, Natural Resource Depletion, and Damage Caused by Pollution compared with Standard Net National Savings Measurements
Figure 3.2. Annual Flow of Benefits from Forests in Selected Countries
Figure 3.3. Economic Benefits Under Alternate Management Practices
Table 4.1. Increase in Nitrogen Fluxes in Rivers to Coastal Oceans
Figure 5.2. Comparison of Global River Nitrogen Export
Figure 5.4. Number of Undernourished Children Projected in 2050 Under MA Scenarios
Figure 5.5. Net Change in Components of Human Well-being Between 2000 and 2050 Under MA Scenarios.
Figure 8.1. Total Carbon Market Value per Year (in million dollars nominal)