Languages:
 

Box 4.1. An Outline of the Four MA Scenarios

It is important to remember that no scenario will match the future as it actually occurs. None of the scenarios represents a “best” path or a “worst” path. There could be combinations of policies and practices that produce significantly better or worse outcomes than any of these scenarios. The future will represent a mix of approaches and consequences described in the scenarios, as well as events and innovations that could not be imagined at the time of writing (S5).

The focus on alternative approaches to sustaining ecosystem services distinguishes the MA scenarios from previous global scenario exercises. The four approaches were developed based on interviews with leaders in NGOs, governments, and business on five continents, on scenario literature, and on policy documents addressing linkages between ecosystem change and human well-being. The approach to scenario development used in the MA consists of a combination of qualitative storyline development and quantitative modeling based on assumptions about the evolution of indirect drivers such as economic and population growth (S6).

The Global Orchestration scenario explores the possibilities of a world in which global economic and social policies are the primary approach to sustainability. The recognition that many of the most pressing global problems seem to have roots in poverty and inequality evokes fair policies to improve the well-being of those in poorer countries by removing trade barriers and subsidies. Environmental problems are dealt with in an ad-hoc reactive manner, as it is assumed that improved economic well-being will eventually create demand for and the means to achieve environmental protection. Nations also make progress on global environmental problems, such as greenhouse gas emissions and the depletion of pelagic marine fisheries. However, some local and regional environmental problems are exacerbated. The results for ecosystem services are mixed. Human well-being is improved in many of the poorest countries (and in some rich countries), but a number of ecosystem services deteriorate by 2050, placing at risk the long-term sustainability of the well-being improvements.

The Order from Strength scenario examines the outcomes of a world in which protection through boundaries becomes paramount. The policies enacted in this scenario lead to a world in which the rich protect their borders, attempting to confine poverty, conflict, environmental degradation, and deterioration of ecosystem services to areas outside the borders. These problems often cross borders, however, impinging on the well-being of those within.

The Adapting Mosaic scenario explores the benefits and risks of environmentally proactive local and regional management as the primary approach to sustainability. In this scenario, lack of faith in global institutions, combined with increased understanding of the importance of resilience and local flexibility, leads to approaches that favor experimentation and local control of ecosystem management. The results are mixed, as some regions do a good job managing ecosystems but others do not. High levels of communication and interest in learning leads regions to compare experiences and learn from one another. Gradually the number of successful experiments begins to grow. While global problems are ignored initially, later in the scenario they are approached with flexible strategies based on successful experiences with locally adaptive management. However, some systems suffer long-lasting degradation.

The TechnoGarden scenario explores the potential role of technology in providing or improving the provision of ecosystem services. The use of technology and the focus on ecosystem services is driven by a system of property rights and valuation of ecosystem services. In this scenario, people push ecosystems to their limits of producing the optimum amount of ecosystem services for humans through the use of technology. Often, the technologies they use are more flexible than today’s environmental engineering, and they allow multiple needs to be met from the same ecosystem. Provision of ecosystem services in this scenario is high worldwide, but flexibility is low due to high dependence on a narrow set of optimal approaches. In some cases, unexpected problems created by technology and erosion of ecological resilience lead to vulnerable ecosystem services, which may breakdown. In addition, the success in increasing the production of ecosystem services often undercuts the ability of ecosystems to support themselves, leading to surprising interruptions of some ecosystem services. These interruptions and collapses sometimes have serious consequences for human well-being.

Source: Millennium Ecosystem Assessment
 Ecosystems and Human Well-being: Biodiversity Synthesis (2005),
p.60-61

Related publication:
Biodiversity (MA) homeBiodiversity & Human Well-being
Other Figures & Tables on this publication:

Direct cross-links to the Global Assessment Reports of the Millennium Assessment

Box 1. Biodiversity and Its Loss— Avoiding Conceptual Pitfalls

Box 1.1. Linkages among Biodiversity, Ecosystem Services, and Human Well-being

Box 1.2. Measuring and Estimating Biodiversity: More than Species Richness

Box 1.3. Ecological Indicators and Biodiversity

Box 1.4. Criteria for Effective Ecological Indicators

Box 2. MA Scenarios

Box 2.1. Social Consequences of Biodiversity Degradation (SG-SAfMA)

Box 2.2. Economic Costs and Benefits of Ecosystem Conversion

Box 2.3. Concepts and Measures of Poverty

Box 2.4. Conflicts Between the Mining Sector and Local Communities in Chile

Box 3.1. Direct Drivers: Example from Southern African Sub-global Assessment

Box 4.1. An Outline of the Four MA Scenarios

Box 5.1. Key Factors of Successful Responses to Biodiversity Loss

Figure 3.3. Species Extinction Rates

Figure 1.1. Estimates of Proportions and Numbers of Named Species in Groups of Eukaryote Species and Estimates of Proportions of the Total Number of Species in Groups of Eukaryotes

Figure 1.2. Comparisons for the 14 Terrestrial Biomes of the World in Terms of Species Richness, Family Richness, and Endemic Species

Figure 1.3. The 8 Biogeographical Realms and 14 Biomes Used in the MA

Figure 1.4. Biodiversity, Ecosystem Functioning, and Ecosystem Services

Figure 2. How Much Biodiversity Will Remain a Century from Now under Different Value Frameworks?

Figure 2.1. Efficiency Frontier Analysis of Species Persistence and Economic Returns

Figure 3. Main Direct Drivers

Figure 3.1. Percentage Change 1950–90 in Land Area of Biogeographic Realms Remaining in Natural Condition or under Cultivation and Pasture

Figure 3.2. Relationship between Native Habitat Loss by 1950 and Additional Losses between 1950 and 1990

Figure 3.3. Species Extinction Rates

Figure 3.4. Red List Indices for Birds, 1988–2004, in Different Biogeographic Realms

Figure 3.5. Density Distribution Map of Globally Threatened Bird Species Mapped at a Resolution of Quarter-degree Grid Cell

Figure 3.6. Threatened Vertebrates in the 14 Biomes, Ranked by the Amount of Their Habitat Converted by 1950

Figure 3.7. The Living Planet Index, 1970–2000

Figure 3.8. Illustration of Feedbacks and Interaction between Drivers in Portugal Sub-global Assessment

Figure 3.9. Summary of Interactions among Drivers Associated with the Overexploitation of Natural Resources

Figure 3.10. Main Direct Drivers

Figure 3.11. Effect of Increasing Land Use Intensity on the Fraction of Inferred Population 300 Years Ago of Different Taxa that Remain

Figure 3.12. Extent of Cultivated Systems, 2000

Figure 3.13. Decline in Trophic Level of Fisheries Catch since 1950

Figure 3.14. Estimated Global Marine Fish Catch, 1950–2001

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.15. Estimates of Forest Fragmentation due to Anthropogenic Causes

Figure 3.16. Fragmentation and Flow in Major Rivers

Figure 3.17 Trends in Global Use of Nitrogen Fertilizer, 1961–2001 (million tons)

Figure 3.18 Trends in Global Use of Phosphate Fertilizer, 1961–2001 (million tons)

Figure 3.19. Estimated Total Reactive Nitrogen Deposition from the Atmosphere (Wet and Dry) in 1860, Early 1990s, and Projected for 2050

Figure 3.20. Historical and Projected Variations in Earth’s Surface Temperature

Figure 4. Trade-offs between Biodiversity and Human Well-being under the Four MA Scenarios

Figure 4.1. Losses of Habitat as a Result of Land Use Change between 1970 and 2050 and Reduction in the Equilibrium Number of Vascular Plant Species under the MA Scenarios

Figure 4.2. Relative Loss of Biodiversity of Vascular Plants between 1970 and 2050 as a Result of Land Use Change for Different Biomes and Realms in the Order from Strength Scenario

Figure 4.3. Land-cover Map for the Year 2000

Figure 4.4. Conversion of Terrestrial Biomes

Figure 4.5. Forest and Cropland/Pasture in Industrial and Developing Regions under the MA Scenarios

Figure 4.6. Changes in Annual Water Availability in Global Orchestration Scenario by 2100

Figure 4.7. Changes in Human Well-being and Socioecological Indicators by 2050 under the MA Scenarios

Figure 6.1. How Much Biodiversity Will Remain a Century from Now under Different Value Frameworks?

Figure 6.2. Trade-offs between Biodiversity and Human Well-being under the Four MA Scenarios

Table 1.1. Ecological Surprises Caused by Complex Interactions

Table 2.1. Percentage of Households Dependent on Indigenous Plant-based Coping Mechanisms at Kenyan and Tanzanian Site

Table 2.2. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Provisioning services

Table 2.2. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Regulating services

Table 2.2. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Cultural services

Table 2.2. Trends in the Human Use of Ecosystem Services and Enhancement or Degradation of the Service Around the Year 2000 - Supporting services

Table 6.1. Prospects for Attaining the 2010 Sub-targets Agreed to under the Convention on Biological Diversity